Linear shrinkage effects upon a sandy loam savanna soil physical characteristics

  • Américo Hossne García Universidad de Oriente, Núcleo de Monagas, Departamento de Ingeniería Agrícola Maturín, estado Monagas, Venezuela.
  • Jean Carlos Ydrogo Barreto Universidad de Oriente, Núcleo de Monagas, Departamento de Ingeniería Agrícola Maturín, estado Monagas, Venezuela.
  • Carmen Carolina Del Valle Challa Universidad de Oriente, Núcleo de Monagas, Departamento de Ingeniería Agrícola Maturín, estado Monagas, Venezuela.
  • José Alberto Aray Barrios Universidad de Oriente, Núcleo de Monagas, Departamento de Ingeniería Agrícola Maturín, estado Monagas, Venezuela.
  • José Ahdel Castro Ajmad Universidad de Oriente, Núcleo de Monagas, Departamento de Ingeniería Agrícola Maturín, estado Monagas, Venezuela.
  • Carmen Antonia Velásquez Universidad de Oriente, Núcleo de Monagas, Departamento de Ingeniería Agrícola Maturín, estado Monagas, Venezuela.
Palabras clave: Consolidación, consistencia, compactación, secamiento, floculación, conductividad hidráulica

Resumen

En general se acepta que el suelo con arcillas caoliníticas se contraen poco o no. El suelo franco arenoso de sabana del estado Monagas de Venezuela contiene caolinita, que aumenta con la profundidad, se contrae lo suficiente, que desde un punto de vista agrícola produce varios efectos sobre los parámetros físicos del suelo y las condiciones de crecimiento adecuadas de la raíz. El objetivo general fue determinar los efectos de la contracción lineal en períodos de secado al ambiente en cuatro horizontes de un suelo franco arenoso de sabana. Metodológicamente se utilizó un molde semicilíndrico lineal para evaluar la contracción lineal; estadísticamente un diseño de bloques al azar experimental sencillo factorial (7*7*4), el análisis de varianza, la mínima diferencia significativa (MDS), regresiones múltiples, pares de prueba de comparaciones y superficie de respuestas. Se concluyó que la contracción lineal aumentó con los períodos de secado y la profundidad del suelo; la máxima desecación del suelo se produjo entre las 48 y 60 h períodos de secado; la densidad aparente húmeda no varió significativamente con los periodos de secado, pero sustancialmente con la profundidad. El secado del suelo, la contracción y la consolidación son los mismos procesos. Estos suelos se consolidan completamente después de una buena saturación a las 48 h, causando disgregación y pulverización con requerimiento de riego cada dos o tres días.

Descargas

La descarga de datos todavía no está disponible.

Citas

Ackroyd, L.W. 1963. The Correlation between Engineering and Pedological Classification Systems in Western Nigeria and its Implications. Proc. Third Reg. Conf. for Africa on Soil Mechanics and Foundation Engineering Salisbury, Southern Rhodesia. 1: 85-88.

Agus T.S., Kabul B.S., Ahmad Rifa’i and Indrasurya B. M. 2011. The Effect of water content change and variation suction in behavior swelling of expansive soil. International Journal of Civil & Environmental Engineering, 11(3): 11-17.

Armstrong A.C., P.B. Leeds-Harrison, G.L. Harris and J.A. Catt. 1999. Measurement of solute fluxes in macroporous soils: techniques, problems and precision. Soil Use and Management, 15: 240–246.

Avrami, E. and Guillaud, H. 2008. Terra Literature Review: An Overview of Research in Earthen Architecture. Los Angeles, The Getty Conservation Institute.

Behera, B.K., B.P. Varshney and A.K. Goel. 2009. Effect of puddling on puddled soil characteristics and performance of self-propelled transplanter in rice crop. Agricultural Engineering International: CIGRE Journal. Vol. 10. Manuscript PM 08 020. 138.68 KB. 18 p.

Bensallam, S., La. Bahi, H. Ejjaaouani, V. Shakhirev. 2012. A New Shrinkage Curve Model, Applied to Moroccan Clayey Soil. International Journal of Geosciences, 3(3): 507-514. Article ID: 21217. DOI:10.4236/ijg.2012.33053.

Berntsen, R. and B. Berre. 1993. Fracturing of soil clods and the soil crumbling effectiveness of draught tillage implements. Soil and Tillage Research, 28(1): 79-94.

Boivin, P., B. Schaffer, E. Temgoua, M. Gratier, G. Steinman. 2006. Assessment of soil compaction using soil shrinkage modeling: Experimental data and perspectives. Soil and Tillage Research. 88: 65-79.

Boivin, P., P. Garnier, and D. Tessier. 2004. Relationship between clay content, clay type, and shrinkage properties of soil samples. Soil Science Society of America Journal, 68:1145–1153.

Braudeau, E., J.M. Costantini, G. Bellier and H. Col-leuille. 1999. New device and method for soil shrinkage curve measurement and characterization. Soil Science Society of America Journal, 63(3): 525-535.

Braudeau, E., and A. Bruand. 1993. Détermination de la courbe de retrait de la phase argileuse à partir de la courbe de retrait établie sur échantillon de sol non remanié. Application á une séquence de sols de côte d’Ivoire. C. R. Académie des Sciences Séries 2. 316: 685–692.

Bresson, L.M. and C.J. Moran. 1995. Structural change induced by wetting and drying in seedbeds of a hardsetting soil with contrasting aggregate size distribution. European Journal 0f Soil Science 46: 205-214.

Brisbane City Council. 2014. Soils for Landscaping and Garden Use. Reference Specifications for Civil Engineering Work, S190 Landscaping. Brisbane, Australia. www.brisbane.qld.gov.au.

Bronswijk, J.J.B. 1991. Relation between vertical soil movements and water-content changes in cracking clays. Soil Science Society of America Journal. 55: 1220-1226.

BSI. 1990. Methods of test for soils suitable for civil engineering purposes – classification tests (BS1377-2): British Standards Institution (BSI), London, UK.

Casanellas, J.P., M. Lopez-Reguerin y C.R. De Laburu. 2003. Edafología para la Agricultura y el Medio Ambiente. S.A. Mundi-Prensa Libros. Tercera Edición. ISBN 9788484761488. 926 p.

Chertkov, V.Y. 2000. Modeling the pore structure and shrinkage curve of soil clay matrix. Geoderma, 95: 215-246.

Chertkov, V.Y. 2003. Modelling the shrinkage curve of soil clay pastes. Geoderma, 112: 71-95.

CIVIL2121. 2012. Soil classification. Engineering Geology and Geomechanics. Classification systems based on the US system (The Unified Soil Classification System, USCS), or the British Standard Soil Classification System, The Australian Soil Standard. Http://geotech.uta.edu/lab/main/sieve. 12p. Revisado febrero 2012.

Coder, K.D. 2000. Soil compaction & Trees: causes, symptoms & effects. The University of Georgia, the United States Department of Agriculture. University of Georgia Warnell School of Forest Resources Extension Publication. www.forestry.uga.edu/efr. 92,34 kb. 37 p.

Cornelis, W.M., J. Corluy, H. Medina, J. Díaz, R. Hartmann, M. Van Meirvenne and M. E. Ruiz. 2006. Measuring and modelling the soil shrinkage characteristic curve. Geoderma, 137: 179–191.

Correia, S.L., D. Hotza and A.M. Segadães. 2004. Simultaneous optimization of linear firing shrinkage and water absorption of triaxial ceramic bodies using experiments design. Ceramics International. 30: 917–922.

Dexter A.R., 1988. Advances in characterization of soil structure. Soil and Tillage Research, 199-238.

Diamond, S. 1970. Pore size distribution in clays. Clays Clay Miner. 18: 7–23.

Dickinson, W.T., R. Pall and G.J. Wall. 1982. Seasonal variations in soil erodibility. American Society of Agricultural engineering. Paper No. 82-2573. ASAE.

Fahey, M. 2014. Compression and consolidation. Geomechanics 610255. School of Civil and Resource Engineering, University of Western Australia. Revised: 01/12/2014. 722 KB, 36 p.

Fabiola, N., Giarola, B., da Silva, A. P., Imhoff, S. and Dexter, A. R. (2003). Contribution of natural soil compaction on hardsetting behavior, Geoderma 113 : 95 - 108.

Fies, J.C., and A. Bruand. 1998. Particle packing and organization of the textural porosity in clay-silt-sand mixtures. Eur. J. Soil Sci. 49: 557–567.

Fryrear, D.W. 1984. Soil Ridges-Clods and Wind Erosion. Transactions of the ASAE, 27 (2): 0445-0448. (doi: 10.13031/2013.32808).

Gallipoli, D., S.J. Wheeler and M. Karstunen. 2003. Modelling of variation of degree of saturation in a deformable unsaturated soil. Geotechnique, 53(1): 105-112.

Gidigasu, M. D. 1973. Review of identification of problem lateritic soils in highway engineering. Transport Research Board, Washington 497, pp. 96-111.

Giraldez, J.V., G. Sposito and C. Delgado. 1983. A general soil volume change Equation: I. Two-Parameter Model. Soil Science Society of America Journal, 47(3): 419-422.

Haines, W.B., 1923. The volume changes associated with variations of water content in soil. The Journal of Agricultural Science. Cambridge 13: 293–310.

Head, K. H. (1994). Manual of soil laboratory testing. Soil classification and compaction tests. 2nd Edition. Pentech Press, London. ISBN 10: 0470233621. 440 p.

Heidema, P.B. (1957). The bar shrinkage test and the practical importance of bar- linear shrinkage as an identifier of soils. Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, 1: 44- 48.

Holtz, R.D. and Kovacs, W.D. (1981). An Introduction to Geotechnical Engineering. Prentice-Hall. Ed. Newmark, N.M. and Hall, W.J. ISBN 0-13-484394-0. 733 p.

Hossne, A.J., Y.N. Mayorga, A.M. Zasillo, L.D. Salazar and F.A. Subero. 2012. Savanna soil water content effect on its shear strength-compaction relationship. Revista Científica UDO Agrícola 12 (2): 324-337. revistaudoagricola@ gmail.com. ISSN 1317 – 9152

Hossne, A.J., Y.N. Mayorga, A.M. Zasillo, L.D. Salazar and F.A. Subero. 2009. Humedad compactante y sus implicaciones agrícolas en dos suelos franco arenoso de sabana del estado Monagas, Venezuela. Revista Científica UDO Agrícola 9(4): 937-950. revistaudoagricola@gmail.com. ISSN 1317–9152.

Houben, H. and Guillaud, H. 1994. Earthen Architecture: A comprehensive guide. London, UK, Intermediate Technology Development Group.

Ingles, O.G. 1962. Bonding forces in soils - Part 3, Proceeding of the First Conference of the Australian Road Research Board, 1: 1025-1047.

Jaquin, P. 2008. Analysis of historic rammed earth construction. School of Engineering. University of Durham. PhD. Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/2169/. 9,69 MB, 242 p.

Jegede, O.G., Olaleye, B.M. 2013. Evaluation of engineering geological and geotechnical properties of sub grade soils along the re-Aligned Igbara-Odo Ikogosi highway, South Western, Nigeria. The International Journal of Engineering and Science, |2(5): 18-21 ISSN(e): 2319–1813 ISSN(p): 2319–1805.

Kantey, B.A. and Brink, A.B.A. 1952. Laboratory Criteria for the Recognition of Expansive Soils, S. Africa National Building Research Institute, Bulletin No. 9, p. 25.

Kim, D.J., H. Vereecken, J. Feyen, D. Boels and J.J.B. Bronswijk. 1992. On the characterization of the unripe marine clay soil. 1. Shrinkage processes of an unripe marine clay soil in relation to physical ripening. Soil Science, 153(6): 471-481.

Kujawski, R. F. 2010. Return to Plant Culture and Maintenance fact sheet index. UMass Extension Educator. University of Massachusetts Amherst. 5 p.

Low, P.F., Margheim, J.F. 1979. The swelling of clay: I. Basic concepts and empirical equations. Soil Science Society of America Journal 43: 473-481.

Lutenegger, A.J, A.B. Cerato and N. Harrington. 2003. Some physical and chemical properties of some piedmont residual soils. Department of Civil and Environmental Engineering, University of Massachusetts. 8p.

McGarry, D. and K.W.J. Malafant. 1987. The analysis of volume change in unconfined units of soil. Soil Science Society of America Journal. 51: 290-297.

Mitchell, J.K. 1993. Fundamentals of soil behavior. John Wiley, New York, 437 pages.

Moormann, E.R and van N. Breemen. 1978. Rice: Soil, Water, Land. International Rice Research Institute, PO Box 933, 1099 Manila, Philippines, 185 p.

Naphade, J.D. and B.D. Ghyldyal. 1971. Effect of puddling on physical properties of rice soils. Indian Journal Agricultural Science, 41: 1065-67.

Nawaz, M., G. Bourrié, and F. Trolard. 2013. Soil compaction impact and modelling. A review, Agronomy for Sustainable Development 33: 291-309.

Newman, A.C.D. and A.J. Thomasson. 1979. Rothamsted studies of soil structure III. Pore size distributions and shrinkage processes. Journal of Soil Science 30: 415-439.

Olsen, P.A., and L.E. Haugen. 1998. A new model of the shrinkage characteristic applied to some Norwegian soils. Geoderma 83:67–81. doi:10.1016/S0016-7061(97)00145-6.

Panwar, J.M. and J.C. Siemens. 1972. Shear strength and energy of soil failure related to density and moisture. Transaction ASAE, 15:423-427.

Parker, J.C., Amos D. F., Zelazny L. W. 1982. Water adsorption and swelling of clay minerals in soil systems. Soil Science Society of America Journal 46: 450-456.

Peng, X., R. Horn and A. Smucker. 2007. Pore shrinkage dependency of inorganic and organic soils on wetting and drying cycles. Soil Science Society American Journal, 71: 1095–1104.

Rajaram, G. and D.C. Erbach. 1999. Effect of wetting and drying on soil physical properties. Journal of Terramechanics, 36(1): 39–49.

Rucks, L., F. García, A. Kaplán, J. Ponce de León y M. Hill. 2004. Propiedades Físicas del Suelo. Universidad De La República, Facultad de Agronomía, Departamento de Suelos y Aguas, Montevideo, Uruguay. Montevideo- Uruguay. 68 p.

Santamarina, J.C., K., Klein, and M., Fam. 2001. Soils and waves. John Wiley, Chichester, UK, 488 pages.

Schafer W.M., Singer M.J. 1976. Influence of physical and mineralogical properties on swelling of soils in Yolo County, California. Soil Science Society of America journal 40: 557-562.

Singh, K.B. 2011. Dynamics of hydraulic properties of puddled soils. Krishi Vigyan Kendra, Moga. Punjab Agricultural University, Ludhiana, India. www.intechopen.com. ISBN: 978-953-307-288-3. 48 p.

Soa, H.B. and A.J. Ringrose-Voaseb. 2000. Management of clay soils for rainfed lowland rice-based cropping systems: an overview. Soil & Tillage Research 56: 3-14.

Sridharan, A. and Prakash, K. 1998. Mechanism Controlling the Shrinkage Limit of Soils. Geotechnical Testing Journal, GTJO DJ, 21(3): 240–250.

Stirk, G.B. 1954. Some aspects of soil shrinkage and the effect of cracking upon water entry into the soil. Australian Journal of Agricultural Research, 5: 279–290.

Taboada, M. A. 2000. Soil shrinkage characteristics in swelling soils. Lecture given at the College on Soil Physics Trieste. LNS0418038. mtaboada@agro.uba.ar. 18 p.

Tariq, A.R. and D.S. Durnford. 1993. Analytical volume change model for swelling clay soils. Soil Science Society of America Journal, 57(5): 1183-1187.

Terzaghi, K. 1943. Theoretical Soil Mechanics, John Wiley and Sons, New York. ISBN 0-471-85305-4.

Tessier, D., and G. Pedro. 1980. Sur les propriétés de gonflement des argiles dans les sols. C. R. Académie Science Paris. 1291, Série D: 461–464.

Verruijt, A. 2005. Consolidation of Soils. University of Technology, Delft, The Netherlands. Encyclopedia of Hydrological Sciences. Edited by M G Anderson. John Wiley & Sons, Ltd.

Vsebnosti, Vpliv and M. Krgovi. 2007. The influence of illite-kaolinite clays mineral content on shrinkage during drying and firing. Materials and Technology 41(4): 189–192.

Warkentin, B.P. and R.N. Yong. 2013. Shear strength of montmorillonite and kaolinite related to interparticle forces. McGill University, Montreal. Department of Agricultural Physics, Macdonald College and Department of Civil Engineering. 9 p.

Whitmore, A.P. and W.R. Whalley. 2009. Physical effects of soil drying on roots and crop growth. Journal of Experimental Botany, 60(10): 2845–2857.

Wijaya, M., E.C. Leongn and H. Rahardjo. 2015. Effect of shrinkage on air-entry value of soils. The Japanese Geotechnical Society Soils and Foundations, 55(1): 166-180.

Publicado
2017-12-29
Cómo citar
Hossne GarcíaA., Ydrogo Barreto, J., Challa, C. C., Aray Barrios, J., Castro Ajmad, J., & VelásquezC. (2017). Linear shrinkage effects upon a sandy loam savanna soil physical characteristics. Revista ESPAMCIENCIA ISSN 1390-8103, 8(2), 41-57. Recuperado a partir de http://revistasespam.espam.edu.ec/index.php/Revista_ESPAMCIENCIA/article/view/168