Digestión anaerobia de las aguas residuales de la industria del café instantáneo

  • Carlos Augusto Morales Paredes Departamento de procesos químicos, Ingeniería Química, Universidad Técnica de Manabí, Av. Urbina y Che Guevara, Portoviejo, Manabí, Ecuador
  • Bryan Fernando Rivadeneira Mendoza Departamento de procesos químicos, Ingeniería Química, Universidad Técnica de Manabí, Av. Urbina y Che Guevara, Portoviejo, Manabí, Ecuador
  • Sergio Enrique García Moreira Departamento de procesos químicos, Ingeniería Química, Universidad Técn
Palabras clave: Degradación biológica; efluente; contaminación ambiental; riesgo químico; bioproducción de metano; aspectos microbiológicos.


La digestión anaerobia es un proceso de degradación biológica que consta de cuatro etapas (hidrólisis, acidogénesis, acetogénesis y metanogénesis) y tiene como finalidad convertir la materia orgánica en biogás, biosol y biol por medio de una serie de reacciones bioquímicas. La tecnología de degradación anaerobia ha sido empleada en la remediación de efluentes provenientes de la industria del café instantáneo, con el propósito de reducir su alta carga contaminante. Por lo tanto, el objetivo del presente trabajo es compilar información referente al peligro que ocasionan las aguas residuales de la industria del café instantáneo, así como las tecnologías de remediación para mitigar el impacto ambiental que estas generan al medio ambiente y a la salud del ser humano. Se revisan las diferentes alternativas tecnológicas, denotando que la digestión anaerobia, aplicada bajo parámetros óptimos de operación permite degradar altos niveles de materia orgánica presente en el agua residual.


La descarga de datos todavía no está disponible.


Ahring, B. K., Ibrahim, A. A., and Mladenovska, Z. 2001. Effect of temperature increase from 55 to 65 C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water re- search. 35(10): 2446-2452. doi:10.1016/S0043-1354(00)00526-1

Alalm, M. G., Tawfik, A., and Ookawara, S. 2015. Comparison of solar TiO2 photocatalysis and solar pho- to-Fenton for treatment of pesticides industry wastewater: operational conditions, kinetics, and costs. Journal of Water Process Engineering, 8, 55-63. doi:10.1016/j.jwpe.2015.09.007

Álvarez, J., y Sarmiento, J. 2016. Evaluación de la producción de Biogás en régimen continuo y discontinuo a partir de aguas residuales de Café Instantáneo (tesis de pregrado). Universidad de Guayaquil, Guayas, Ecuador.

Amani, T., Nosrati, M., and Sreekrishnan, T. R. 2010. Anaerobic digestion from the viewpoint of microbio- logical, chemical, and operational aspects—a review. Environmental Reviews. 18(NA): 255-278. doi:10.1139/ A10-011

Appels, L., Baeyens, J., Degrève, J., and Dewil, R. 2008. Principles and potential of the anaerobic digestion of was- te-activated sludge. Progress in energy and combustion science. 34(6): 755-781. doi:10.1016/j.pecs.2008.06.002

Bello-Mendoza, R., and Castillo-Rivera, M. F. 1998. Start-up of an anaerobic hybrid (UASB/Filter) reactor trea- ting wastewater from a coffee processing plant. Anaerobe. 4(5): 219-225. doi:10.1006/anae.1998.0171

Carucci, G., Carrasco, F., Trifoni, K., Majone, M., and Beccari, M. 2005. Anaerobic digestion of food industry wastes: effect of codigestion on methane yield. Journal of Environmental Engineering. 131(7): 1037-1045.

Chan, C. H., and Lim, P. E. 2007. Evaluation of sequencing batch reactor performance with aerated and unae- rated FILL periods in treating phenol-containing wastewater. Bioresource Technology. 98(7): 1333-1338. doi: 10.1016/j.biortech.2006.05.033

Clarke, R., and Macrae, R. 1985. Coffee. Chemistry V1 and Technology V2. Elsevier Applied Science Publi- shers, London and New York.

Colleran, E., Finnegan, S., and Lens, P. 1995. Anaerobic treatment of sulphate-containing waste streams. An- tonie van Leeuwenhoek. 67(1): 29-46. doi:10.1007/BF00872194

Coltro, L., Mourad, A., Oliveira, P., Baddini, J., and Kletecke, R. 2006. Environmental Profile of Brazilian Green Coffee (6 pp). The International Journal of Life Cycle Assessment. 11(1): 16-21. doi:10.1065/lca2006.01.230

Corcoran, E., Nellemann, C., Baker, E., Bos, R., Osborn, D., and Savelli, H. 2010. Sick water? the central role of wastewater management in sustainable development: a rapid response assessment. UNEP/GRID-Arendal, Arendal, Norway.

Dinsdale, R. M., Hawkes, F. R., and Hawkes, D. L. 1996. The mesophilic and thermophilic anaerobic digestion of coffee waste containing coffee grounds. Water research. 30(2): 371-377. doi: 10.1016/0043-1354(95)00157-3

Dwyer, D., Weeg-Aerssens E., Shelton D., and Tiedje, J. 1988. Bioenergetic conditions of butyrate metabolism by a syntrophic, anaerobic bacterium in coculture with hydrogen-oxidizing methanogenic and sulfidogenic bacteria. Applied and environmental microbiology. 54(6): 1354-1359.

Foresti, E., Zaiat, M., and Vallero, M. 2006. Anaerobic Processes as the Core Technology for Sustainable Domestic Wastewater Treatment: Consolidated Applications, New Trends, Perspectives, and Challenges. Re- views in Environmental Science and Bio/Technology. 5(1): 3–19. doi:10.1007/s11157-005-4630-9

Gallert, C., Bauer, S., and Winter, J. 1998. Effect of ammonia on the anaerobic degradation of protein by a mesophilic and thermophilic biowaste population. Applied Microbiology and Biotechnology. 50(4): 495-501. doi:10.1007/s002530051326

Gavala, H. N., and Ahring, B. K. 2002. Inhibition of the anaerobic digestion process by linear alkylbenzene sulfonates. Biodegradation. 13(3): 201-209. doi:10.1023/A:1020860027176

Gerardi, M. 2003. Wastewater microbiology series: The microbiology of anaerobic digesters. John Wiley & Sons Inc, New York.

Girotto, F., Pivato, A., Cossu, R., Nkeng, G.E., and Lavagnolo, M.C. 2017. The broad spectrum of possibilities for spent coffee grounds valorisation. Journal of Material Cycles and Waste Management pp. 1-7. doi:10.1007/ s10163-017-0621-5

Grady Jr, C.P.L., Daigger, G.T., and Lim, H.C. 1999. Biological Waste Water Treatment. Marcel Dekker, New York.

Grando, R. L., de Souza Antune, A. M., da Fonseca, F. V., Sánchez, A., Barrena, R., and Font, X. 2017. Tech- nology overview of biogas production in anaerobic digestion plants: A European evaluation of research and development. Renewable and Sustainable Energy Reviews, 80, 44-53. doi:10.1016/j.rser.2017.05.079

ICO, International Coffee Organization. 2017. Trade statistics tables. Disponible en: http://www.ico.org/ monthly_coffee_trade_stats.asp. Revisado: 16 de Junio del 2018.

ICO, International Coffee Organization. 2018. Monthly coffee market report. Disponible en: http://www.ico. org/Market-Report-17-18-e.asp. Revisado: 16 de Junio del 2018.

Jin, P., Bhattacharya, S. K., Williams, C. J., and Zhang, H. 1998. Effects of sulfide addition on copper inhibi- tion in methanogenic systems. Water Research. 32(4): 977-988. doi:10.1016/S0043-1354(97)00300-X

Kayhanian, M. 1999. Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environmental Technology. 20(4): 355-365. doi:10.1080/09593332008616828

Kirk-Othmer. 1985. Concise encyclopedia of chemical technology. Third ed. John Wiley & Sons. A Wiley-In- terscience Publications, New York.

Kostenberg, D., and Marchaim, U. 1993. Solid waste from the instant coffee industry as a substrate for anae- robic thermophilic digestion. Water Science and Technology. 27(2): 97-107.

Koster, I. W., and Lettinga, G. 1988. Anaerobic digestion at extreme ammonia concentrations. Biological Wastes, 25(1), 51-59. doi:10.1016/0269-7483(88)90127-9

Lane, A. G. 1983. Anaerobic digestion of spent coffee grounds. Biomass. 3(4): 247-268. doi:10.1016/0144- 4565(83)90017-3

Latif, M. A., Ghufran, R., Wahid, Z. A., and Ahmad, A. 2011. Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters. Water research. 45(16): 4683-4699. doi:10.1016/j. watres.2011.05.049

Liu, Y., Balkwill, D. L., Aldrich, H. C., Drake, G. R., and Boone, D. R. 1999. Characterization of the anaero- bic propionate-degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter wolinii. International Journal of Systematic and Evolutionary Microbiology. 49(2): 545-556. doi:10.1099/00207713- 49-2-545

Macarie, H., and Guyot, J. P. 1995. Use of ferrous sulphate to reduce the redox potential and allow the start-up of UASB reactors treating slowly biodegradable compounds: application to a wastewater containing 4-me- thylbenzoic acid. Environmental technology. 16(12): 1185-1192. doi:10.1080/09593331608616354

Mahmoud, N., Zeeman, G., Gijzen, H., and Lettinga, G. 2003. Solids removal in upflow anaerobic reactors, a review. Bioresource technology. 90(1): 1-9. doi: 10.1016/S0960-8524(03)00095-6

Murthy, P.S., and Naidu, M.M. 2012. Sustainable management of coffee industry by-products and value ad- dition. A review. Resour. Conserv. Recy. 66: 45-58.

Mussatto, S. I., Machado, E. M., Martins, S., and Teixeira, J. A. 2011. Production, composition, and applica- tion of coffee and its industrial residues. Food and Bioprocess Technology. 4(5): 661-672. doi:10.1007/s11947- 011-0565-z

Nadais, H., Capela, I., Arroja, L., and Duarte, A. 2001. Effects of organic, hydraulic and fat shocks on the performance of UASB reactors with intermittent operation. Water Science and Technology. 44(4): 49-56.

Neves, L., Oliveira, R., and Alves, M. M. 2006. Anaerobic co-digestion of coffee waste and sewage sludge. Waste management. 26(2): 176-181. doi:10.1016/j.wasman.2004.12.022

O’Flaherty, V., Mahony, T., O’Kennedy, R., and Colleran, E. 1998. Effect of pH on growth kinetics and sul- phide toxicity thresholds of a range of methanogenic, syntrophic and sulphate-reducing bacteria. Process Biochemistry. 33(5): 555-569. doi:10.1016/S0032-9592(98)00018-1

Polprasert, C., Dan, N. P., and Thayalakumaran, N. 1996. Application of constructed wetlands to treat some toxic wastewaters under tropical conditions. Water Science and Technology. 34(11): 165-171. doi:10.1016/ S0273-1223(96)00834-7

Qiao, W., Takayanagi, K., Shofie, M., Niu, Q., Yu, H. Q., and Li, Y. Y. 2013. Thermophilic anaerobic diges- tion of coffee grounds with and without waste activated sludge as co-substrate using a submerged AnMBR: System amendments and membrane performance. Bioresource Technology. 150: 249–258. doi:10.1016/j.bior- tech.2013.10.002

Rattan, S., Parande, A. K., Nagaraju, V. D., and Ghiwari, G. K. 2015. A comprehensive review on utiliza- tion of wastewater from coffee processing. Environmental Science and Pollution Research. 22(9): 6461-6472. doi:10.1007/s11356-015-4079-5

Rodríguez, P., Pérez, S., and Fernández, B. 2000. Study of the anaerobic biodegradability of the wastewater during wet processing of coffee. Interciencia. 25(8): 386-390.

Selvamurugan, M., Doraisamy, P., and Maheswari, M. 2010. An integrated treatment system for coffee processing wastewater using anaerobic and aerobic process. Ecological Engineering. 36(12): 1686-1690. doi:10.1016/j.ecoleng.2010.07.013

Shigehisa, I., and Takane, K. 1994. Wastewater treatment with microbial films. Technomic Publishing Co. Inc, Pennsylvania.

Sprott, G. D., and Patel, G. B. 1986. Ammonia toxicity in pure cultures of methanogenic bacteria. Systematic and applied microbiology. 7(2-3): 358-363. doi:10.1016/S0723-2020(86)80034-0

Stergar, V., Zagorc-Končan, J., and Zgajnar-Gotvanj, A. 2003. Laboratory scale and pilot plant study on treat- ment of toxic wastewater from the petrochemical industry by UASB reactors. Water Science and Technology. 48(8): 97-102.

Vlyssides, A., Barampouti, E. M., and Mai, S. 2009. Influence of ferrous iron on the granularity of a UASB reactor. Chemical Engineering Journal. 146(1): 49-56. doi:10.1016/j.cej.2008.05.011

Von Stockar, U., Maskow, T., Liu, J., Marison, I. W., and Patino, R. 2006. Thermodynamics of microbial growth and metabolism: an analysis of the current situation. Journal of Biotechnology. 121(4): 517-533. doi:10.1016/j.jbiotec.2005.08.012

Wang, Q., Yang, Y., Li, D., and Zhang, Z. 2013. Evaluation of a Ca-modified porphyritic andesite for am- monium removal in the anaerobic digestion process. Environmental technology. 34(6): 687-693. doi: 10.1080/09593330.2012.715675

Zarrinbakhsh, N., Wang, T., Rodriguez-Uribe, A., Misra, M., and Mohanty, A. K. 2016. Characterization of wastes and coproducts from the coffee industry for composite material production. BioResources. 11(3): 7637-7653

Zhang, T. C., and Noike, T. 1994. Influence of retention time on reactor performance and bacterial trophic populations in anaerobic digestion processes. Water Research. 28(1): 27-36. doi: 10.1016/0043-1354(94)90116- 3

Cómo citar
Morales Paredes, C., Rivadeneira Mendoza, B., & García Moreira, S. (2018). Digestión anaerobia de las aguas residuales de la industria del café instantáneo. Revista ESPAMCIENCIA ISSN 1390-8103, 9(1), 23-32. Recuperado a partir de https://revistasespam.espam.edu.ec/index.php/Revista_ESPAMCIENCIA/article/view/152